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The crystal orbital formalism in the tight-binding approximation is combined 
with a recently developed CNDO/INDO model for transition metal species 
of the 3d series in order to allow band structure calculations on the Hartree- 
Fock (HF) SCF level for one-dimensional (ID) chains with organometallic 
unit cells. The band structure approach based on the CNDO and INDO 
approximation can be used for any atom combination up to bromine under 
the inclusion of the 3d series. The matrix elements for the tight-binding 
Hamiltonian are derived for an improved CNDO and INDO framework. 
The total energy of the 1D chain is partitioned into one-center contributions 
and into two-center increments of the intracell and intercell type. Semiem- 
pirical band structure calculations on simple model systems are compared 
with available ab initio data of high quality. 

Key words: Tight-binding formalism for 3d polymers-Band structure 
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1. Introduction 

The chemical and physical properties of conducting and semiconducting 
organometaUic chains have been studied extensively in the last decade [1, 2]. 
Important examples where metallic or near metallic conductivities have been 
detected are the partially oxidized tetracyanoplatinate, Pt(CN) 2-, (Krogmann's 
salt) [3], polyferrocenylene [4], nickel and palladium glyoximate derivatives [5], 
bisbenzoquinonedioximates of Ni and Pd [6], molecular metals produced by 
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halogenation of phthalocyanines [7] as well as porphyrinato metallamacrocycles 
with transition metal atoms [8, 9] or SiO/GeO groups [10] as bridging units. 

Unfortunately this experimental variety is accompanied by a deficit of theoretical 
models for the determination of the band structure of these one-dimensional 
(1D) polymers. Several band structure approaches with different degrees of 
sophistication (e.g. X~ method and one-electron calculations of the Wolfsberg- 
Helmholtz type) are only available for the tetracyanoplatinate chain [11-13]. In 
the case of the larger metallamacrocycles only sparse one-electron calculations 
of the Extended Hiickel (EH) type have been published [14]. One-electron 
models are obviously no suitable tool for the investigation of electronic phase 
transitions in polymers (metallic vs. insulating state) due to the neglect of 
electron-electron interaction which determines the electrical and magnetic 
properties of the low-dimensional materials [15, 16]. 

It is clear that tight-binding approaches based on ab initio models are beyond 
the current computational capacities for nearly all of the aforementioned 1D 
chains with transition metal centers. Band structure calculations on these systems 
are therefore restricted to semiempirical frameworks which are based on the 
zero differential overlap (ZDO) approximation where two-electron integrals of 
the multicenter type are neglected. Recently we have developed an improved 
CNDO/INDO model for molecules that contain the atoms H to Br under the 
inclusion of the first transition metal series [17]. The semiempirical ZDO 
operators have been designed to reproduce the computational results of ab initio 
calculations of double-zeta quality. In the formulas for the various two-electron 
integrals, experimental quantities have been taken into account. Thus intraatomic 
and interatomic correlation effects are included partially even in the framework 
of the Hartree-Fock (HF) approximation. The molecular CNDO/INDO model 
has been successfully tested in investigations of ground state properties (e.g., 
geometries, conformational behaviour, and dipole moments) [18-20], excitation 
energies [18], ionization potentials [20-22] and many-body effects [23] in a large 
number of mononuclear and polynuclear transition metal compounds. 

In the following we want to present the extension of this CNDO/INDO model 
[24] for atoms up to bromine to the self-consistent-field tight-binding approxima- 
tion for polymers as developed by Del Re, Ladik and Bicz6 [25, 26]. Various 
CNDO and INDO studies based on the crystal orbital approach have been 
reported for atoms of the first two rows. Morokuma [27], Fujita and Imamura 
[28] as well as Perkins and coworkers [29, 30] have published the first band 
structure calculations based on the CNDO model, while the original INDO 
formalism has been adopted for the first time by O'Shea and Santry [31] and 
by Beveridge et al. [32]. Detailed reviews on the capability of semiempirical 
and ab initio band structure calculations are given in Refs. [26], [33] and [34]. 

Tight-binding models that are based on the CNDO or INDO approximation for 
polymers containing transition metal atoms of the 3d series have not been 
reported. One-electron band structure studies on organometallic 1D systems 
already have been mentioned [13, 14, 16], and EH type calculations for 3D 
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solids with small unit cells (e.g. ScP, VP, CrP, MnP) have been published recently 
[35]. A review of APW and OPW approaches applied to smaller transition metal 
systems (e.g. dichalcogenides, trichalcogenides, and platinocarbonyls) can be 
found in Ref. [36]. 

We have adopted the CNDO/INDO parametrization of Ref. [17] for the 
implementation into the crystal orbital formalism in its original version. For the 
elements Ga to Br only the CNDO variant is available as the necessary Slater- 
Condon parameters for the INDO model are not known for these atoms. The 
elements of the third period (Na--C1) can be treated with asp basis in the INDO 
framework but alternatively with asp and a spd basis in the CNDO approxima- 
tion; the INDO restriction once again has its origin in the missing Slater-Condon 
factors for the virtual 3d set. The invariance criteria satisfied in the present 
semiempirical models differ from the original integral restrictions derived in the 
ZDO approximation [32, 37]. We have adopted an algorithm of Brown and 
Roby [38] where the matrix elements of the Fock operator are invariant under 
transformations of the local axes but not invariant under a transformation into 
such as a basis of hybrid orbitals. This degree of freedom allows the implementa- 
tion of different one- and two-center two-electron integrals for different magnetic 
quantum numbers (s, p, d orbitals). 

The basis equations of the CNDO/INDO tight-binding formalism for transition 
metal chains are presented in the next section. In the following semiempirical 
results are compared with available ab initio band structure calculations on 
smaller model systems. The band structure of nickel(II)glyoximate as derived in 
the INDO version of the present ZDO model is discussed in detail in an 
accompanying contribution. 

2. Basis Equations 

The one-electron crystal orbitals in the tight-binding approximation are given 
by the well-known Bloch sums [39] 

~bk~ = N -1/2 (~1)  ~ exp (t~k )c~lklxAi(rA--/a). (1) 
j=0 ~=1 

where k is the wave vector which is defined in Eq. (2), l represents a band index, j 
symbolizes a cell in the chain (j = 0, origin) and ~ labels the txth AO. Thus 
IxPi(rA --]a) is the ~th AO at center A in the ]th unit cell, and a is the primitive 
vector characterizing the translational symmetry. The Bloch sums of course are 
subject to the periodic Born-von Karman boundary conditions [40]. 

k = 27rp/N p = O, 1, 2 . . . .  ( N  - 1). (2) 

The complex eigenvalue problem for the coefficients C,lk is formulated in Eq. 
(3) [25]; the matrix elements of the Fock operator and the eigenvectors and 
eigenvalues depend parametrically on the wave vector k. 

F(k)C(k)  = C(k)e (k). (3) 
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Eq. (3) is already the ZDO adapted formulation of the self-consistent-field 
method in the tight-binding approximation. 

The k-dependent Fock matrix F(k) and the k-dependent overlap matrix S(k) 
are defined in Eqs. (4) and (5) by means of exp (+ilk) modulated summations 
over the unit cells in the chain. 

F(k) = F(0) + Y. [exp (ijk)F(j) + exp (-ijk)F(-j)] (4) 
j~0  

S(k) = S(0) + E [exp (ijk)S(j) + exp (-ijk)S(-j)]. (5) 
j # O  

The first elements on the right sides of Eqs. (4) and (5) are the Fockian and the 
overlap matrix at the origin while the summation over j spans the neighbouring 
elementary cells. 

The complex Hermitian matrix F(k) can be decomposed into a real (cos) and 
into an imaginary (sin) part by means of Euler's relation. 

F(k) = rF(k)  + (JF(k)) (6) 

rF(k)  =F(0)  + E IF(j) + F ( - j ) ]  cos (jk) (7) 
j #0  

IF(k) = Y. [ F ( j ) - F ( - j ) ]  sin (jk). (8) 
j#0 

The Fock operator F(k) is decomposed into the one-electron core operator 
H(k) and into the two-electron operator G(k) in order to come to a clear 
representation for the tight-binding matrix elements in the CNDO/INDO 
approximation. 

F(k) =H(k)+G(k)  (9) 

n (k ) = n (o) + Y. [exp (ijk )H (j) + exp (-ijk )H (-j) ] (10) 

G(k) = G(0)+ E [exp (ijk)G(j)+exp (-ijk)G(-j)]. (11) 
j #0  

The detailed formulas defined below differ from the definition given in Eqs. (10) 
and (11). We have rearranged the matrix elements in a way that only integrals 
with the coordinates from the reference cell (coordinates from the basis functions 
and from the Hamiltonian) are collected in H(0) and G(0); all contributions 
with coordinates from neighbouring cells are summarized in H(j) and G(j). 

The diagonal and off-diagonal terms of H(0) are respectively defined in Eqs. 
(12) and (13). 

lTAoBo rrA~176 + Y~ ~,~oBo (12) H ( 0 ) , . ~  = - - . o ~ o  
B ~ A  

H(O),,v =HA~ ~ (13) 
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'~'A~176 the electron-core trfA~176 is the atomic core operator, Eq. (14), and --~,ono ~//,O/J.0 
interaction between the tzth AO at center A and the atomic core of atom B (,4 
and B belong to the elementary cell at the origin). 

u A o A o  ( .  A o  { 1_1"12 A o 
~,o~,o =w-o L-2--Vno[P-o ) (14) 

V ~ o ~ o  Ao Ao = ( ~ o  IV ,  olt, o ). (15) 

The magnitude of the atomic core integrals of Eq. (14) differs in the CNDO 
and INDO approximation. The corresponding values which are based on spectro- 
scopic data [41] are summarized in Ref. [17]. 

HAo~ ~ is the resonance integral between AO tt at center A and AO u at B in 
the 0th cell. We have factorized the resonance integral into the following form: 

HAon o A o 1 2 AA~176 lA~176 llztA~176 (16) ~o~o = (~o  I - ~ v  - V A o -  V ~ o l d  o) = - -~o~o  �9 -~o~o "..-~o~o �9 

AAoBo is a function of the AO's  ~ and v, and contains valence state ionization /,~OVO 
potentials. ~,o-orA~176 is an interference term according to the suggestions of Rueden- 

�9 I A o B  o berg and Kutzelnigg [42], ann lvi ~,o~o is a flexible function that has been designed 
for the simulation of ab initio results. These three quantities are discussed in 
detail in Ref. [17]. 

Different expressions for the CNDO and INDO variant are encountered in the 
two-electron elements G(0). The CNDO formulas are displayed in Eqs. (17) 
and (18). Off-diagonal elements for AO's  at one center and two-center terms 
have the same structure in the CNDO framework. In the INDO approximation 
different formulas are derived for off-diagonal elements where both AO's are 
localized at a common center, Eq. (20), and where ~ and u belong to two atoms, 
Eq. (21). 

O(0)c~ D~ = Z P ~  (P.o~o[hoho) - (1/2)P.t, (~ott o[~totto) (17) 
/to 

G(0)cy D~ = -(1/2)P,.~(l.to~oIUoVo) (18) 

G(O'~ INDO ,-,t,~ = Y. P;,~,[(~o~oJhoAo)-(1/2)(tZoholtZoho)] 
,~o~Ao 

+ Y, P~(/z0/.t01o'0o'0) (19) 
O'OEB 0 
B o ~ A o  

G (O)tND~ 2Pt,,(ttovo[~ovo)-(1/2)Pt,,(ttotto[uouo)-(1/2)P~,~(t.tovo[~ovo) 

(20) 

g l , , e A o  

o ( 0 ) ' y  ~ = - ( 1 / 2 ) e ~ .  (gogol  ~o~o). (21) 

I .eeAo u~Bo.  

The general two-electron integral (/Zo/Zo[vWi) is defined in Eq. (22) in terms of 
AO basis functions localized at atom A of the 0th cell and atom B of the ]th 
cell (] = 0 in Eqs. (17)-(21)). 
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(tz ~ ~ (/x~176 (1)~ ~~ (1)I rl~ I ~z'(~,~,(~) 
AoB i 

= Y~o,, (22) 

(SoSol PoPo) = ( 1 / 2 ) ( F ~  ~ + F g  p) 

(Sosoldodo) = ( 1 / 2 ) ( F ~  ~ + F dd) 

(popoldodo) = ( l / 2 ) ( F g  p + Fg d) 

s, p e A o (27) 

s, d ~ Ao (28) 

p, d ~Ao. (29) 

The one-center integrals in the INDO approximation are given by multipole 
expansions constructed by means of theoretically calculated monopole terms 
which are multiplied by a scale factor and by rotationally invariant linear 
combinations [44] of Slater-Condon parameters [45] for the higher multipole 
contributions to the Laplace Neumann expansion. The one-center Coulomb 
elements are displayed in Eqs. (30)-(37), and the exchange parameters are given 
in Eqs. (38)-(42).Each primed basis function in the various formulas symbolizes 
the component of an AO pair with the same magnetic quantum number as the 
unprimed AO but with a different z component (mz). 

INDO (SoSo]SoSo) = F~  ~ 

(popolpopo) = F~ p + 4 F ~  p 

(popo[ P 6P 6 ) = F~ p - 2F~ p 

(dodo[dodo) = Fdo a + 4 F ~  d + 36Fa4 a 

(dodo[d'od'o ) = F g  a - F ~  a - 9 F ~  d 

(Soso[popo) = F 6  p 

(Sosoldodo) = F~ d 

(popoldodo) = F~ d 

(soPolSoPo) = G]  p 

(30) 

(31) 
(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

CNDO 

The diagonal one-center Coulomb integrals in the CNDO approximation are 
given by means of a scaled monopole term F~ ~ calculated for AO's of s symmetry 
with Burns' exponents [43] that correspond to the actual AO; the scaling factors 
f for the various atomic species are summarized in Table 2 of Ref. [17]. 

CNDO (tXotXo,UolZo)=f . ( s ~ ( 1 ) s ~ ( 1 )  l s . ( 2 ) s ~ ( 2 ) ) = F ~  ~ (23) 

(SoSo[SoSo) = F~ s (24) 

(poPo[PoPo) = F~" (25) 

(dodoldodo) = Fdo d. (26) 

The CNDO off-diagonal elements in the one-center limit are defined in Eqs. 
(27)-(29) and are the result of the CNDO invariance criterion. 
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(sodolsodo) = G f 

(POP; [POP;) = 3F~" 

(podolpodo) = 2G~ d + 21G~ d 

(dod'o Idod'o ) = 2.5F~ d + 22.5F4 dd. 
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(39) 

(4o) 

(41) 

(42) 

The necessary multipole components (F~ p, F dd, Fa4 d, G] p, G~ a, G~ d, G~ d ) are sum- 
marized in Ref. [17]. 

All two-center Coulomb integrals are calculated by means of the empirical 
Dewar-Sabel l i -Ohno-Klopman (DSOK) relation [46] (43) where two-center 
quantities are related to diagonal atomic Coulomb elements�9 The DSOK 
expression for the interaction between the txth AO at center A in the 0th cell 
and AOu at atom B in the ]th cell reads: 

A o B  i ~o~, = (tx0a~176 1 lu~'(2)u~'(2)) 
r 1 2  

= l l4R~o, ,  + 0.25 (l[(txo~ol~otzo) + l[(uoUo[uouo)) 2. (43) 

The elements P , ,  and P , ,  of the bond order matrices in Eqs. (17)-(21) will be 
defined below�9 

The intercell elements H(])  and G(]) are identical for both (CNDO/INDO) 
ZDO variants and are shown in Eqs. (44)-(49). 

�9 A o A .  I ? ' A ~  IzAiB~ + 2 COS ( k j )H .o . /  (44) I~H (])~,~ = V . o ~ l  + " ,~,~o 

�9 A o B .  , r T A . B  o \ nH( f ) , v  = cos (k])(H,o~ / ~-n ,] ,  o ) (45) 
�9 A o B .  - -  ~ . l  A ' B  o ~H(])~. = sin (kj)(H,.o. / --~]~o ) (46) 

p~.[y. (~,ao% ]' * " o , 1  . . . .  + Ao~- RG(] ) . .  + Y.,'Xo ) J -- COS ttr l)q . . y . o . /  (47) 
L Ai 

r~, . : /  + A o B  i + A . B o ~  RG(]),~v = --(1/2) cOS tXl)tq,,,.Y,.o,,, +q,,,:YM,'o ) (48) 
�9 - -  A o B .  - -  A i B  o ',, 'G  ( ] )~  = - (1/2) sin (k]) (q ,,,~y,~o,,/- q ,,,~3' ~,,,o ). (49) 

The physical meaning of the various integrals on the right sides of Eqs. (44-49) 
can be easily gathered from the intrasegment expressions�9 The intercell elements 
have been derived with the aid of the relations (50)-(52) which follow directly 
from the translational symmetry of the 1D chain. 

nAon  i =_ nAino ,~oB:, . , .o  (50)  

v og:/= vL#: (51) 
aoS_, = A,So (52) 

' Y  ~ o u - j  "Y t x i v o  

The intrafragment charge density bond order matrix P~. is defined in Eq. (53); 
the bond orders q~. for AO' s /x  and v that are/ '  unit cells apart are given in 
Eq. (54)�9 
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_ 2  f2= 2 fo 2'~ o~ (C*,kC.,k)] dk 

R R I I = ( c.tk C,,lk + C~.lk C,.tk) dk (53) 
1 1 

q ~  N Jo exp (• = C i . d k C v l  k dk 

~T occ 

~r = Clxl (2,rr-k ). ( 5 5 )  

The coupled complex Hermitian eigenvalue problems, Eq. (3), can be either 
solved directly by standard routines [47], or alternatively the Fockian can be 
rearranged into the real form Eq. (56). 

(l F(k) RC(k) 
"F(k) R F ( k ) ] \ ' C ( k ) ] = ( ' C ( k ) )  e(k)" (56) 

The eigenvalues of Eq. (56) of course are doubly degenerate. There are two 
important motives to avoid the diagonalization via the real problem (56). SCF 
iterations based on Eq. (56) need in any case an enhanced storage in the computer, 
a limiting factor that is of crucial importance in the case of large unit cell 
dimensions (e.g. large number of AO's). The second, even more restrictive 
condition lies in the degeneracy of the eigenvalues in Eq. (56). The formation 
of symmetry adapted Bloch sums is prevented in the case of 1D chains of spatial 
point groups {R]0} and space groups {R If} with degenerate irreducible rep- 
resentations due to the artificial degeneracies in Eq. (56). For instance the 
symmetry of the Bloch sums is violated during the SCF iterations. Therefore we 
have solved Eq. (3) directly for the calculation of the crystal orbitals. 

The convergence of the SCF iteration is in any case a serious problem in 
calculations on transition metal species [48]. Therefore it is necessary to allocate 
a set or various reliable sets of occupied bands after an one-electron calculation 
of the EH type. The trial Bloch sums are extremely iUconditioned if the core 
operator of the present CNDO/INDO model is employed as zeroth order 
approximation. Matrix elements of a suitable one-electron Hamiltonian (EH) 
used in the first step are summarized below. 

H(0).z~ = -I,.,. (57) 
E H  H(0) v =H oy o (58) 

R H ,  . \ E H  (kj)HAoA,. (59) t l ) . .  = 2 COS 

I.,~ is the valence state ionization potential for an electron in the ~th AO [17]. 
( H(1).v  and H(1).,, ) correspond to Eqs. (45) The remaining matrix elements R �9 EH jr . EH 

and (46). The bond order matrices of the (n + 1)th iteration are calculated by 
means of an accelerated Hartree damping [49]. 
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p.,,,~.+l)=(1-c(n)P~,,,oo+c(n)P.,,,~,,_l) 0_c(n ) -< l .  (60) 

A large number of calculations has shown that c (1) = 0.7 is a suitable choice for 
the first diagonalization of the complete Fock operator; in the subsequent SCF 
steps c (n) is always reduced by 0.1. The intercell bond order matrices are damped 
in the same way. 

The total energy of the polymer is defined in Eqs. (61), (62) (electronic energy) 
and (63) (core-core repulsion), 

E t o t  ----- E e l  4- E . . . .  (61) 

Eel = Eel(0) + E [Eel(i) +Eel(-])] (62) 
j#0 

E . . . .  = E  . . . .  ( 0 ) +  • E . . . .  ( ] )  (63 )  
j~0 

E .... (J) = • Y E ..... AoB, (64) 
Ao B i 

E . . . . .  A o B i  = X A Z B  ( t . L A ~ 1 7 6  1]Bil]Bi)  +frep(RAoB,). (65 )  

ZA and Zs in the formula for the core-core repulsion represent the atomic core 
charges. The proper choices for the AO basis functions at centers A and B are 
formulated in Eqs. (55)-(58) of Ref. [17], and frep(RAoBo) is defined in Eq. (59) 
of Ref. [17]. The electronic contributions of Etot read: 

Eel(0) = (1/2) E Y P.~[H(O)~ +F(O)~] 
P~O vO 

(66) 

Eel(j) = (1/2))~ Z q~,,[H(])~, +F(]),,~]. (67) 
b~ v 

In order to understand the quantum chemical origin for the formation of 1D 
chains, the strength of intracell and intercell coupling, and the charge drifts in 
the system, we want to dissect the total energy into one-center contributions, 
two-center fragments of the intrasegment type, and two-center elements between 
neighbouring unit cells. The following formulas are an extension of the work of 
Pople and Santry [50] as well as of Fischer and Kollmar [51] on molecular 
CNDO Hamiltonians, of Imamura and Fujita on a CNDO/2 tight-binding 
approximation [52] and of Dewar and Lo [53] on the INDO descendant 
MINDO/2 (molecular fragmentation). 

The total energy of the polymer is decomposed into the partial summations of 
Eq. (68). 

Etot = Y, EAo + 32 Z EAoBo + Y Z • EAoB,. (68) 
A o  A o < B o  j # O  A o B i 

The one-center energies can be fragmented into core (EUo), Coulomb (E~.o) and 
exchange (E~o) contributions. 
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U J Eao =EAo +EAo +E~o 

ao 
= P [ f A o A o  

M. C. B 6 h m  

(69) 

(7o) 

The Coulomb and exchange elements in the CNDO approximation are displayed 
in Eqs. (71) and (72). 

A o Ao 

CNDO E.~ o = (1/2) Y: ~ P,.~P~(/xo~olvovo) (71) 
/z v 

Ao Ao 

vL( o, ol o.o). E ~  o = - ( 1 / 4 )  E Y, (72) 
bc v 

The corresponding expressions in the INDO framework are given in Eqs. (73) 
and (74), respectively. The various combinations of one-center charge density 
bond order elements (P1-Pz2) are derived in Eqs. (75)-(86). 

INDO E ~  o = (1/2)PZs(sosolsoSo)+(1/2)P~(popolpopo) 

+ (1/2)e2(dodoldodo) 

+ P3(sosolPoPo) + 2P4(soPo[SoPo) 

+ Ps(popolp'op'o) + 2P6(pop'o [pop;) 

+ P7(sosoldodo) + 2P8(sodolsodo) 

+ Pg(popoldodo) + 2Plo(podolpodo) 

+ e l i  (dodold;d;) + 21:'~2(dod'o Ldod;) (73) 

E~o = - (1/4)P~,(SoSolSoSo) - (1/4)P~(popo[popo) 

- ( 1 / 4 ) e 2 ( d o d o l d o d o )  

- ( 1 / 2 ) P a ( s o s o l p o p o )  - (1/2)(P3 +t'4)(sopolsopo) 
- (1/2)P6(poPo[P'op'o) - (1/2)(P5 +P6)(PoP; [pop ;) 

- ( 1 / 2 ) P 8 ( s o s o l d o d o )  - (1/2)(P7 + e8) (sodolsodo)  

- (1/2)e~o(popoldodo)- (1/2)(P9 +Plo)(podolpodo) 

- (1/2)P~2(dodold'od'o) - (1/2)(Pa i +Pxa)(dod'o[dod'o) (74) 

Ao 
e,-- x eL=PL+e ,,+PL (75) 

t ~ p  

A~  2 2 2 2 P2= Y~ p~,, = p ~  + p  . . . .  +py~y~+pZ_y~_y:  +P~yxy (76) 
~ d  

"3 = Pss(?~p P~ta,) ( 7 7 )  

2 2 P4 =P~x +P,y + P ~  (78) 
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P5 = Px,,Pyy + PxxPz~ + PcyP= 

P6 = p2y + P~z + P~z 

A o 

\ / x ~ d  I 

(79) 

(80) 

(81) 

All one-center formulas correspond to an atom with s, p and d orbitals. In the 
case of the H atom only the first element on the right sides of Eqs. (73) and 
(74) must be taken into account. The elements P1, P2, P a - P 7  contribute to the 
one-center Coulomb and exchange contributions for an atom with s and p 
orbitals. 

The two-center intrasegment energies are decomposed into the aforementioned 
two-electron components (E~,oB o : Coulomb, EAKoBo : exchange), into a resonance 

E C  (ERoBo), an electron-core (EAoBo) and a core-core (ECono) parameter. 

R ~C s K +EACoBo EAoBo = E AoBo + E AoSo + E Ao13o + E goBo (87) 
A o B o 

R ~ p T 4 A o B o  EAoBo = 2 ~ (88) /.a ~b~v ~ ~ /~ovo 
ix v 

A ~  B ~  I T B o A o  Ec - v o ~rAoBo + ~ . ~ o A o  (89) E AoBo -- /_, Jt gt~ V u.oSo 
ix v 

A o  B o 
Y r'l r'J A o B  o 

E A o B o  = E E l"p.ixFvv'Ylzovo ( 9 0 )  

A o B o 
K ~'~ r , 2  A o B  o EAo.o = - - ( 1 / 2 )  E L r.~Yixo.o (91) 

ix v 

C 
EAoBo = E . . . . .  AoBo. (92) 

The intercell parameters are structurally related to the intracell components .  
R E C  1 

EAoBj = E AoBj + E gon~ + E gon, +E~oB, + EACoBj (93) 
A o  B i 

R w + r T A o B  i 
EAoBj = ~ 2., q.~t-i .o~ (94) 

k~ v 

A o 

Ps = Y~ p 2  (82) 
, ~ d  

A o  A o 

P9 = ~ ~ Pix.P~. (83) 
p. Ep u~d 

A o A o 

P l o =  E Y~ p 2  (84) 
p.~p v~d 

A o 
Pll = • ~o Pix~P~ (85) 

tzed ued 

Ao o 
P12 2 2 = P.~. (86/ 

~xed v~d 



362 M . C .  B 6 h m  

EC ~ o  Bo E AoB, P ~  vAg~ ' BoA, = + E PvvV~oA, (95) 

A o B i 
J AiB o EAoB i = (1/2) Y~ EP~,~P~(3'~2~' +3%-,o ) (96) 

/x v 

Ao B i 
E K + + AoB i AoBi = - ( 1 / 4 )  • • q.-q..Y.o~, (97) 

/x v 

EAon,C = Ecore.AoBr (98) 

In recent years several theoretical investigations on the electronic structure of 
long (infinite) polymers have been published where long-range exchange interac- 
tions or antiferromagnetic coupling have been suggested [54, 55]. Tight-binding 
calculations in connection with the aforementioned fragmentation scheme into 
physically feasible elements should be a suitable tool to quantify the nature of 
these solid state effects. 

The ensemble of two-electron integrals and electron-core elements of the 
CNDO/INDO Fockian in the tight-binding approximation consists of spherical 
averages. The integrals are a function of the magnetic quantum number m 
(s, p, d), but they are independent from the z-component (mz) of m. This restric- 
tion follows from the employed invariance critera of the present ZDO model. 

( ~I 'AoBo The intracell (r -/A~176 and intercell ,-~o~o , resonance integrals on the other 
\ ~  ~ kCo~, o ] 

hand depend on m~ (o-, ~- and 8 overlap). The intracell elements are at first 
calculated in the diatomic coordinate system where the z-axis corresponds to 
rnz = 0. In a subsequent step these diatomic integrals are rotated into the coordin- 
ate system of the unit cell in the origin. 

I ' l  L [ A o B o  
~ f  A ~ 1 7 6  = ~,, ~ Oc~olXoV, YDovo.l ~t aol3 0 �9 (99) ~ l~oVo 

ao [3o 

The same procedure for H A~ is only valid if the polymer has no combined /-LO ~j 

symmetry operation (e.g. translation along a primitive or a helical axis combined 
with a rotation around the axis). In this case it is impossible to represent the 
atoms in the 0'th cell and the atoms in the neighbouring cells (] ~ 0) by a common 
coordinate system because the cyclic boundary conditions would be violated. 
The frame in the / th  cell(s) has to be rotated with the molecules in order to 
preserve the symmetry of the Bloch sums. The intersegment resonance integrals 
are therefore determined in three steps. The transformation from the diatomic 
system into the global (common) coordinate system is displayed in Eq. (100). 
The deconvolution of the resonance integrals to the ] 'th cell is symbolized in 
Eq. (101). Two important examples of the transformation matrices U for an 
atomic spd basis are summarized in the Appendix (primitive translation coupled 
to a rotation, screw axis combined with a rotation). 

H A o B j  ~ T-..I'Ao B" 

r "YI 

H A~ U H A~ (101) 
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3. Comparison with ab initio Band Structure Calculations 

In the subsequent semiempirical calculations always the INDO version of the 
ZDO operator has been employed, the density matrices have been calculated 
at ten points within the first Brillouin zone, and the lattice summations are 
extended to five neighbours. The geometries have been adopted from the cited 
ab initio studies. We have compared the INDO results with available ab 
initio band structure calculations of high quality in a series of simple model 
systems. 

In Table 1 we have symmarized INDO crystal orbital data on an idealized linear 
HF chain together with ab initio calculations with different basis sets [56]. The 
ab initio bases in Table 1 symbolize uneontracted gaussians (first elements: F, 
latter ones: H, see Ref. [56]). It is seen that both the absolute positions of the 
bands as well as the bandwidths are satisfactorially reproduced by the approxi- 
mate crystal orbital formalism. The width of the ~" band is slightly overestimated 
while the width of the highest or band is close to the Ae3 value of the extended 
basis set (10, 6, 2/6, 1) calculation. The difference in the Ae values of the INDO 
and the ab initio approaches is large in the case of the inner valence band e2. 
This behaviour is typical for band structure calculations based on ZDO models 
and has been analyzed in various contributions [27, 30, 57]. The INDO net 
charges are between the 8, 4/4 populations on one side and the extended basis 
set results on the other side. 

In Table 2 INDO results on all-trans-polyacetylene are compared with two ab 
initio crystal orbital data [58] as well as with an approach based on an one-electron 
nonempirical effective Hamiltonian (VEH) [57]. Once again a sufficient confor- 
mity between the INDO model and the sophisticated band structure approaches 
is encountered; the width of the o- bands is slightly overestimated. 

Table 1. Comparison of the band structure data (e(k) at the marginal k-points and 
net charges) for the linear hydrogen fluoride chain calculated by means of the 
INDO operator (INDO) and by means of ab initio calculations with different 
degrees of sophistication. All values in a.u. Ae = bandwidth; q = net charge; a = unit 
cell dimension. ~r band = E 4 

abinitio [56] 
INDO 8, 4/4 9, 5, 1/5, 1 10, 6, 2/6, 1 

e4(O) --0.6542 --0.6739 --0.6779 --0.6823 
e4(~/a) --0.6073 --0.6525 --0.6609 --0.6655 
As4 0.0469 0.0214 0.0170 0.0168 
s3(O) -0.6586 -0.6816 -0.7332 -0.7432 
s3(~/a) -0.7670 -0.8840 -0.8655 -0.8663 
As3 0.1084 0.2025 0.1323 0.1231 
s2(0) -1.7881 -1.6374 -1.6333 -1.6381 
s2(~/a) --1.5606 --1.5983 --1.6100 --1.6170 
~e2 0.2275 0.0391 0.0234 0.0211 
qH 0.488 0.435 0.576 0.571 
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Table 3. Comparison of the ~" band characteristics in all-trans, cis-transoid and trans-cisoid polyacety- 
lene calculated by means of the INDO operator and by means of an ab initio effective Hamiltonian 
(VEH). Unit cell is C2H2, i.e. unfolding of the 7r bands in the latter two polymers is applied. All 
values in a.u. Ae = bandwidth; a = unit cell dimension 

INDO VEH 

Polymer k = 0 k = lr/a AE k = 0 k = ~r/a Ae 

all-trans 
polyacetylene -0.550 -0.276 0 . 2 7 4  -0.482 -0.243 0.239 

cis-transoid 
polyacetylene -0.540 -0.333 0 . 2 0 7  -0.482 -0.246 0.236 

trans-cisoid 
polyacetylene -0.539 -0.329 0 . 2 1 0  -0.482 -0.242 0.240 

In Table 3 7r band characteristics for all-trans, cis-transoid and trans-cisoid 
polyacetylene as derived in the I N D O  framework and in the V E H  formalism 
[57] are summarized. The differences (position and width of the bands) between 
both models are less than 10%. 

Band structure calculations on the acetylenic and butatrienic backbone of poly- 
diacetylene are collected in the Tables 4 and 5. The ab initio calculations 
correspond to the minimal STO-3G basis and to an extended 7s/3p approach 
[59]; in the last columns of the two tables once again V E H  data are shown. The 
absolute positions of the I N D O  bands are close to the 7s/3p results. The width 
of the valence band e9(~r) is slightly underestimated in comparison to the ab 
initio data, while AeT(~') in the I N D O  model comes close to the results of the 
timeconsuming calculations. 

In Table 6, the STO-3G, 7s/3p and 7 s / 3 p / l d  calculations on polyyne [60] are 
compared with the present semiempirical data. The I N D O  results for the valence 
band are in almost perfect agreement with the two extended basis set 
(7s/3p, 7 s / 3 p / l d )  calculations. In analogy to the foregoing examples the width 
of the or bands is overestimated. 

The STO-3G [61] and I N D O  results on some boron containing polymers are 
displayed in Table 7. We have compared the calculated band gaps as well-as 
the ionization potentials. It is seen that the theoretically determined ionization 
energies in both types of band structure calculations are close to each other. 
The band gaps however differ significantly in both procedures. The I N D O  
differences are smaller than the ab initio gaps. It is wellknown that HF ab initio 
band gaps are too large in comparison to experimental values as a result of the 
neglected correlation contributions [62]. Effective Hamiltonians with dressed 
two-electron interactions lead to a renormalization of the one-particle spectrum 
(orbital energies in molecules, band energies in polymers) [63]. The I N D O  gaps 
therefore should be a more realistic description of the energetic separation 
between the top of the valence band and the bottom of the conduction 
band. 
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Table 7. Comparison of the band gap and the ionization potential in some boron containing polymers 
as predicted by the INDO model (INDO) and ab initio calculations with the STO-3G basis (STO) 
[61] 

(HBBe),, (HBBH). (HBCH2). (HBNH). (HBO),, 
INDO STO INDO STO INDO STO INDO STO INDO STO 

Band 
gap (eV) 2.06 5.79 2.23 7.48 9.64 13.57 10.08 11.86 10.91 12.81 
Ionization 
potential 
(eV) 6.62 7.36 7.25 10.40 9.57 11.88 9.27 10.61 10.24 12.05 

4. Conclusion 

The band structure formalism in the tight-binding approximation has been 
implemented into a recently developed CNDO/INDO approach for atoms up 
to bromine under the inclusion of the 3d elements. The semiempirical MO 
model had been designed to reproduce the computational results of time- 
consuming ab initio calculations. The various parameters of the ZDO Hamil- 
tonian have been optimized on the basis of more than 100 ab initio studies on 
a large variety of molecules (organic compounds, 3d complexes). The comparison 
of the semiempirical band structure data with high quality ab initio calculations 
presented in section 3 has shown that the CNDO/INDO crystal orbital formalism 
should be a suitable tool for the determination of band structure characteristics 
of reliable quality. 

The SCF crystal orbital model has been developed in order to calculate the band 
structure of those extended organometallic polymers on the level of the HF 
approximation that are beyond current computational capacities for ab initio 
studies. The necessary CPU times for the present CNDO/INDO tight-binding 
approach span a range between 1 h for nickel(II)glyoximate and 3-4 h for 
metallamacrocycles with the porphyrine ribbon on an IBM 370/168 computer 
(lattice sums extended to 5-7 neighbours, 10 calculations in the first Brillouin 
zone of the k-space). The band structures of these systems are reported in 
subsequent publications. 

The ZDO approximation allows a straightforward partitioning of the total energy 
of the polymer into one-center and two-center (intracell and intercell) contribu- 
tions. This energy partitioning scheme will be used in further studies for the 
investigation of solid state effects in organometallic chains such as the nature of 
the dd interactions, exchange coupling, antiferromagnetic long-range contribu- 
tions etc. The implementation of an effective Hamiltonian with dressed two- 
electron interactions should allow a reliable assessment of band gaps even in 
the HF framework because correlation effects are partially included in the model 
operator. 
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Appendix 

T h e  0 matr ices  in Eqs.  (99) and (100) have  been  defined in Ref.  [24]. For  the  
cons t ruc t ion  of the  U mat r ix  in Eq.  (101), it is a s sumed  tha t  the ro ta t ed  funct ions  
(s, p, d) for  the a toms  in t h e / t h  cell (j  # 0) are descr ibed  with respec t  to the  
space-f ixed A O ' s  at the  origin. T h e  genera l  s t ra tegy for  this basis t r ans fo rma t ion  
is descr ibed  in the  l i tera ture  [64]. T h e  mat r ix  e l emen t s  for  a ro ta t ion  a be tween  
two unit  cells re la ted  by a pr imi t ive  t ransla t ion are def ined below.  T h e  ro ta t ional  
axis is the z-axis.  T h e  s tandard  sequence  of the  A O  basis funct ions is a ssumed  
(s, p~, py, p~, d~, d~z, dye, dx~ y=, d~y). 

U(R~(a)) :  

(1, 1 ) =  1 

(2, 2) = cos a 

(2, 3) = sin a 

(3, 2) = - s i n  a 

(3, 3) = cos c~ 

(4, 4) = 1 

(5, 5 ) =  1 

(6, 6) = cos o~ 

(6, 7) = sin a 

(7, 6) = - s i n  o~ 

(7, 7) = cos o~ 

(8, 8) = cos 2o~ 

(8, 9) = sin 2~ 

(9, 8) = - s i n  2~ 

(9, 9) = cos 2a .  

All o ther  matr ix  e lements  of U(Rz (a))  are zero.  

T w o  angles are necessary  to descr ibe  the basis t r ans fo rma t ion  in the case of a 
helical axis comb ined  with a ro ta t ion  be tween  the  molecules  of the var ious  unit  
cells. Wi thou t  loss of genera l i ty  we can select Rz (~) and Ry (/3), T h e  s u m m a r i z e d  
mat r ix  e lements  of U(Rz (~)Ry (/3)) are none  o ther  than  the we l l -known F(1)(&, O) 
e lements  of the angular  over lap  mode l  [65] in a slightly r ea r r anged  form.  

U(R~(a)Ry(/3)): 

(i, I ) =  1 

(2, 2) = cos o~ cos/3 

(2, 3) = sin 

(2, 4) = - c o s  o~ sin/3 

(3, 2) = - sin ~ cos/3 

(3, 3) = cos c~ 

(3, 4) = sin ~ sin/3 

(4, 2) = sin/3 

(4, 4) = cos /3  

(5, 5) = ( 1 / 4 ) + ( 3 / 4 )  cos 2/3 
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(5, 

(5 ,  

(6, 

(6, 

(6, 

(6, 

(6, 

(7, 

(7, 

(7, 

(7, 

(7, 

(8, 

(8, 

(8, 

(8, 

(8, 

(9, 

(9, 

(9, 

(9, 

6) = (x/3/2) sin 2/3 

8) = (45 /4 )  - ( 45 /4 )  cos 2/3 

5) = - ( x / 3 / 2 )  cos o~ sin 2/3 

6) = cos a cos 2/3 

7) = sin a cos/3 

8) = (1/2)  cos o~ sin 2/3 

9) = sin ~ sin/3 

5) = ( 4 3 / 2 )  sin a sin 2/3 

6) = - s i n  a cos 2/3 

7) = cos ~ cos/3 

8) = - ( 1 / 2 )  sin o~ sin 2/3 

9) = - c o s  c~ sin/3 

5) = cos 2 a  [ (45 /4 )  - ( 45 /4 )  cos 2/3] 

6) = - ( 1 / 2 )  cos 2tz sin 2/3 

7) = - s i n  2 a  sin/3 

8) = cos 2o~[(3/4)+ (1/4)  cos 213] 

9) = sin 2 a  cos/3 

5) = - s i n  2 a  [ (45 /4 )  - ( 45 /4 )  cos 2/3] 

6) = (1/2)  sin 2 a  sin 2/3 

7) = - c o s  2 a  sin/3 

8) = - s i n  2 a  [ (3/4)  + (1 /4)  cos 2/3 ] 

M. C. B6hm 

(9, 9) = cos 2 a  cos/3. 

All  o the r  mat r ix  e lements  are  zero.  

B o t h  U matr ices  co r r e spond  to an a t o m  with s, p and d orbitals;  in the  case of 
a r educed  n u m b e r  of A O ' s  only  the  1 X 1  or  4 X 4  subunits  have  to be  considered.  
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